
ADDENDUM TO THE SEDUMI USER GUIDE
VERSION 1.1

IMRE PÓLIK

1. Introduction

The main goal of this reference guide is to give a summary of all the options in
SeDuMi. The default value of the options is satisfactory for general use. If you
experience difficulties solving some problems please report them at the SeDuMi
Forum (http://sedumi.mcmaster.ca). If you need a longer description of SeDuMi
and examples of use then consult the old (1.05R5) manual [3].

2. Input format

A full-featured SeDuMi call in Matlab is
>> [x,y,info] = sedumi(A,b,c,K,pars);

where most of the parts can be omitted. With this call SeDuMi solves the
following primal-dual optimization problem:

min cT x max bT y

Ax = b AT y + s = c

x ∈ K s ∈ K∗,

where A ∈ Rm×n, x, s, c ∈ Rn, y, b ∈ Rm, K is a cone and K∗ is its dual cone.
Omitting K implies that all the variables are nonnegative. A, b and c contain the
problem data, if either b or c is missing then it is treated as zero.

The structure K defines the cone in the following way: it can have fields K.f,
K.l, K.q, K.r and K.s, for Free, Linear, Quadratic, Rotated quadratic and Semi-
definite. In addition, there are fields K.xcomplex, K.scomplex and K.ycomplex for
complex-variables.

(1) K.f is the number of FREE, i.e., UNRESTRICTED primal components.
The dual components are restricted to be zero. E.g. if K.f = 2 then x(1:2)
is unrestricted, and s(1:2)=0. These are ALWAYS the first components in
x.

(2) K.l is the number of NONNEGATIVE components. E.g., if K.f=2, K.l=8
then x(3:10)>=0.

(3) K.q lists the dimensions of LORENTZ (quadratic, second-
order cone) constraints. E.g., if K.l=10 and K.q = [3 7] then
x(11) >= norm(x(12:13)), x(14)>= norm(x(15:20)). These com-
ponents ALWAYS immediately follow the K.l nonnegative ones. If
the entries in A and/or c are COMPLEX, then the x-components in

Date: June 16, 2005.
Based on the original SeDuMi User Guide and the contents of the SeDuMi help.

1

2 IMRE PÓLIK

norm(x(#,#)) take complex-values, whenever that is beneficial. Use
K.ycomplex to impose constraints on the imaginary part of A*x.

(4) K.r lists the dimensions of Rotated LORENTZ constraints. E.g., if K.l=10,
K.q=[3,7] and K.r = [4 6], then 2*x(21)x(22) >= norm(x(23:24))^2
and 2*x(25)x(26)>=norm(x(27:30))^2. These components ALWAYS im-
mediately follow the K.q ones. Just as for the K.q-variables, the variables
in norm(x(#,#)) are allowed to be complex, if you provide complex data.
Use K.ycomplex to impose constraints on the imaginary part of A*x.

(5) K.s lists the dimensions of POSITIVE SEMI-DEFINITE (PSD)
constraints. If K.l=10, K.q = [3 7] and K.s = [4 3], then
mat(x(21:36),4) is PSD, mat(x(37:45),3) is PSD. These compo-
nents are ALWAYS the last entries in x.
• K.xcomplex lists the components in f,l,q,r blocks that are allowed to

have nonzero imaginary part in the primal.
• K.scomplex lists the PSD blocks that are Hermitian rather than real

symmetric.
• Use K.ycomplex to impose constraints on the imaginary part of A*x.

The dual multipliers y have analogous meaning as in the x>=0 case, except that
instead of c-A’*y>=0 resp. -A’*y>=0, one should read that c-A’*y resp. -A’*y
are in the cone that is described by K.l, K.q and K.s. In the above example,
if z = c-A’*y and mat(z(21:36),4) is not symmetric/Hermitian, then positive
semi-definiteness reflects the symmetric/Hermitian parts, i.e. s + s’ is PSD.

If the model contains COMPLEX data, then you may provide a list K.ycomplex,
with the following meaning:

• y(i) is complex if ismember(i,K.ycomplex)
• y(i) is real otherwise

The equality constraints in the primal are then as follows:

• A(i,:)*x = b(i) if imag(b(i)) ~= 0 or ismember(i,K.ycomplex)
• real(A(i,:)*x) = b(i) otherwise.

Thus, equality constraints on both the real and imaginary part of A(i,:)*x should
be listed in the field K.ycomplex.

You may use EIGK(x,K) and EIGK(c-A’*y,K) to check that x and c-A’*y are
in the cone K.

3. Options

Most of the options in SeDuMi can be overridden by specifying them explicitly in
the structure pars. This structure can have the following fields (the default value
is in brackets).

3.1. General options.

pars.fid (1): The output of SeDuMi is written to the file with handle fid.
If fid=0, then SeDuMi runs quietly, i.e., there is no screen output. Use
fopen to assign a handle to a file.

pars.maxiter (150): The maximum number of iterations. In most cases
SeDuMi stops after 20-30 iterations, and almost never needs more than 100
iterations.

SEDUMI REFERENCE GUIDE 3

pars.eps (10−8): Desired accuracy. If this accuracy is achieved then
info.numerr is set to 0. If pars.eps=0 then SeDuMi runs as long as
it can make progress.

pars.bigeps (10−3): In case the desired accuracy pars.eps cannot be
achieved, the solution is tagged as info.numerr=1 if it is accurate to
pars.bigeps, otherwise it yields info.numerr=2.

pars.alg (2): If pars.alg=0, then a first-order wide region algorithm is
used, not recommended. If pars.alg=1, then SeDuMi uses the centering-
predictor-corrector algorithm with v-linearization. If pars.alg=2, then xz-
linearization is used in the corrector, similar to Mehrotra’s algorithm. The
wide-region centering predictor-corrector algorithm was proposed in Chap-
ter 7 of [2].

pars.theta (0.25), pars.beta (0.5): These are the wide region and neigh-
borhood parameters. Valid choices are 0 < pars.theta ≤ 1 and 0 <
pars.beta < 1. Setting pars.theta=1 would restrict the iterates to follow
the central path in an N2(β)-neighbourhood. In practice, SeDuMi rounds
pars.beta to be between 0.1 and 0.9 and pars.theta to be between 0.01
and 1.

pars.stepdif (2): If pars.stepdif=0 then the primal-dual step differentia-
tion is always disabled, while if pars.stepdif=1 then it is always enabled.
Using step differentiation helps if the problem is ill-conditioned or the al-
gorithm is close to convergence. Setting pars.stepdif=2 uses an adaptive
scheme: it starts SeDuMi with step-differentiation disabled and enables it
• after 20 iterations, or
• if feasratio is between 0.9 and 1.1, or
• more than one conjugate gradient iterate is needed.

pars.w (1, 1): If step-differentiation is enabled, SeDuMi weights the relative
primal, dual and gap residuals as w(1):w(2):1 in order to find the optimal
step differentiation. These number should be greater than 10−8.

pars.numtol (5× 10−7), pars.bignumtol (0.9), pars.numlvl (0): These
options control some numerical behaviour, don’t tamper with them.

3.2. Options controlling the preprocessing.
pars.denf (10), pars.denq (0.75): Parameters used in deciding which

columns are dense and sparse.
pars.free (1): Specifies how SeDuMi handles free variables. If pars.free=0

then free variables are converted into the difference of two nonnegative
variables. This method is numerically unstable and unnecessarily increases
the number of variables. If pars.free=1 then free variables are placed
inside a Lorentz cone whose first variable is unconstrained. This method is
more stable and has also been suggested by Jos Sturm in [4]. Please note
however, that this makes the problem nonlinear and it might take longer
to solve it. If you experience such behaviour then change this setting to 0.

pars.sdp (1): Enables the SDP preprocessing routines, such as detecting di-
agonal SDP blocks.

3.3. Options controlling the Cholesky factorization. These options are sub-
fields of pars.chol.

pars.chol.skip (1): Enables skipping bad pivots.

4 IMRE PÓLIK

pars.chol.canceltol (10−12): Relative tolerance for detecting cancellation
during Cholesky factorization.

pars.chol.abstol (10−20): Skips pivots falling below this value.
pars.chol.maxuden (500): Pivots in dense-column factorization so that

these factors satisfy max(abs(Lk)) ≤ maxuden.

3.4. Options controlling the Conjugate Gradient refinement. Various pa-
rameters for controlling the Preconditioned conjugate gradient method (CG), which
is only used if results from Cholesky factorization are inaccurate.

pars.cg.maxiter (49): Maximum number of CG-iterates (per solve). The-
oretically needed is |add|+2*|skip|, the number of added and skipped
pivots in Cholesky.

pars.cg.refine (1): Number of refinement loops that are al-
lowed. The maximum number of actual CG-steps will thus be
1+(1+pars.cg.refine)*pars.cg.maxiter.

pars.cg.stagtol (5× 10−14): Terminates if relative function progress is less
than this number.

pars.cg.restol (5× 10−3): Terminates if residual is a pars.cg.restol frac-
tion of the duality gap. Should be smaller than 1 in order to make progress.

pars.cg.qprec (1): Stores CG-iterates in quadruple precision if
pars.cg.qprec=1.

3.5. Debugging options.

pars.vplot (0): If this field is 1, then SeDuMi produces a plot for research
purposes.

pars.stopat (-1): SeDuMi enters debugging mode at the iterations specified
in this vector.

pars.errors (0): If pars.errors=1 then SeDuMi outputs some error mea-
sures as outlined at the 7th DIMACS challenge. The errors are both dis-
played in the output and returned in info.err.

4. Output format

4.1. Description of the output fields. When calling SeDuMi with three output
variables ([x,y,info]=sedumi(...)) some useful information is returned in the
structure info. It has the following fields:

info.cpusec: Total CPU (not wall clock) time in seconds spent in optimiza-
tion.

info.timing: Detailed CPU timing information in seconds. The three num-
bers give the time spent in preprocessing, IPM iterations and postprocess-
ing, respectively. Although in most cases IPM iterations take more than
90% of the time, in some cases it can be as low as 50%.

info.feasratio: The final value of the feasibility indicator. This indicator
converges to 1 for problems with a complementary solution, and to -1 for
strongly infeasible problems. If info.feasratio is somewhere in between,
and the problem is not purely linear then the problem may be nasty (e.g.,
the optimum is not attained). Otherwise, if the problem is linear then the
reason must lie in numerical problems: try to rescale the problem.

SEDUMI REFERENCE GUIDE 5

info.pinf, info.dinf: If info.pinf=1 then there cannot be an x ≥ 0 with
Ax = b, and this is certified by y, viz. bT y > 0 and AT y ≤ 0 thus y is a
Farkas solution. On the other hand if info.dinf=1 then there cannot be a
y such that c−AT y >= 0, and this is certified by x, viz. cT x < 0, Ax = 0,
x ≥ 0. Thus x is a Farkas solution. If both info.pinf and info.dinf are
0 then the solution given by SeDuMi is both near primal and dual feasible.

info.numerr: Indicates how accurate the solution is. If info.numerr = 0
then the desired accuracy (specified by pars.eps) is achieved. If
info.numerr = 1 then only reduced accuracy (given by pars.bigeps) is
achieved. Finally, if info.numerr = 2 indicates complete failure due to
numerical problems.

info.err: If the option pars.errors is set to 1 then SeDuMi outputs some
error measures as described in [1].

References

1. H. D. Mittelmann, An independent benchmarking of SDP and SOCP solvers, Mathematical
Programming (2003), no. 95, 407–430.

2. Jos F. Sturm, Primal-dual interior point approach to semidefinite programming, Ph.D. thesis,
Tilburg University, The Netherlands, 1997, TIR 156, Thesis Publishers Amsterdam.

3. , Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones, Opti-

mization Methods and Software (1999), no. 11-12, 625–653.
4. , Implementation of interior point methods for mixed semidefinite and second order

cone optimization problems, EconPapers 73, Tilburg University, Center for Economic Research,

August 2002.

McMaster University, Advanced Optimization Lab

E-mail address: poliki@mcmaster.ca

